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Abstract: In a previous paper [1] it is proposed a mechatronic speed variator, which consists of a differential 
planetary unit and of two electrical machines: a motor and a generator. This paper presents a simplified 
dynamic model and simulates the dynamic response of a like variator equipped with DC machines.  
 
1. INTRODUCTION 
 

In the paper [1] it is proposed and analysed a conceptual solution of a mechatronic speed 
variator, whose scheme is given in Fig.1; in this scheme, the indexes m, g and r mean motor,
generator and resistant load respectively. For a like variator, equipped with a differential 
planetary unit and with two DC machines (a motor and a generator), the paper presents a 
simplified dynamic model and simulates its dynamic response, for two given running cases.  
 
2. THE DYNAMIC RESPONSE 

 
In Fig.1 there are presented the scheme and notations used in the dynamic modelling, 

which relies on and the following premises:  
a) the elements are rigid bodies;  
b) the used DC motor runs on an adjustable mechanical characteristic and its angular speed 
is positive (ωm>0, see Fig.1); the characteristic adjusting is accomplished by modifying the 
supplying voltage U: U/Un = ω0m/ω0mn (the index n refers to the natural characteristic);  
c) the used DC generator runs only on its natural mechanical characteristic; its angular 
speed has the following features: ωg<0  and | ωg| < | ωm| (see Fig.1);  
d) the inertial effects from the planetary mechanism (considered lonely) are neglected;  
e) the rubbing effect is considered by means of the efficiency: η0 = η H

13 = 0,9752 = 0,95;  
According to Fig.1, the following correlations can be written using the Newton-Euler’s 

method: 
 

Fig. 1. The conceptual scheme of the mechatronic planetary speed variator. 
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The dynamic behaviour of the differential speed variator is described by two movement 
equations, which result from the system (1):  
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in which:  

.J)1.(2JC;J.JJ.AB;J).1.(2JA 10HH3130H0 η++=+=η++η= (3)  
The variator’s dynamic model can be obtained by defining the outside torques Tg , Tm

and Tr, which interfere in equations (2). For the next simulations, the output torque Tr is 
considered  constant, while the generator torque (Tg) and the motor torque (Tm) are 
defined by the following expressions.  
The generator running has two phases:  

1) The phase of the idle running, in which ωg = 0… ω0g and Tg = 0 ;
2) The phase of the load running, in which |ωg | ≥ |ω0g| and 

],Nm[5,1416.093,6.T ggggg −ω−=τ+ων−= (4) 
The motor runs on a artificial mechanical characteristic, derived from the output sizes 

(Tr and ωH), whose equation has the following expression: 
],Nm[.357,4.357,4T m0mmmmm ω+ω−=τ+ων−= ),T( Hrm0m0 ωω=ω (5) 

In the stationary regime (when ε = 0 and Tr = TH, T1 = Tm, T3 = Tg), the angular speed 
),(00 Hrmm T ωωω = and the implicit voltage ),( Hrmm TUU ω= can be calculated thus: 
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in which, for our simulations:  
ωH = +20,944 [s-1], TH= -400; -1000 [Nm], Umn = 460 [V] and ω0mn = 418,88 [s-1]. 

First, by means of the previous mechanical characteristics, the sizes ωm, ωg and εm, εg
can be established from the equations (2),…,(6). Then, on the basis of these solutions, 
can be obtained the other parameters (with respect of time), which interfere in the dynamic 
response of the variator: 
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On the basis of relations (2),…,(7) and of the Matlab-Simulink programming medium, a 
calculating program was elaborated, whose schemes are illustrate in Fig.2,a,…,d. 
According to Fig.2,a, in which the overall programming scheme is represented, the 
simulations start from the values of the output sizes Tr and ωH.
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First, by means of these values and of the relations (6), there are determined the 
stationary generator’s torque (Tg) and the stationary motor’s torque (Tm). Then, on the 
basis of the generator’s mechanical characteristic there are established the generator’s 
stationary angular speed (ωg) and the motor’s stationary angular speed (ωm) implicitly.  

The values of the stationary sizes Tm and ωm allow the determination of motor’s artificial 
mechanical characteristic, by the idle motor speed ω0m and by the supply voltage Um. The 
Simulink block scheme, illustrated in Fig.2,b, establishes these parameters. Similarly, the 
Simulink blocks, illustrated in Fig.2,c and d, model the mechanical characteristics of the 
motor and of the generator respectively.  

a) 

b) 
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c) 

d) 
Fig. 2. Simulink schemes of the running program: a) the overall scheme; b) partial scheme for the 

determination of the sizes Tg, ωg, Tm, ω0m and Um; c, d) the motor and generator scheme. 

3. NUMERICAL SIMULATIONS  
 

By means of the calculating program, illustrated in Fig.2, there are achieved numerical 
simulations of the variator’s dynamic response, for the two stated values of the output 
torque Tr; as an example, the previous numerical data were used, completed with the 
following data:  

 J1 = 1,1 [kgm2], J3 = 1 [kgm2], JH = 5 [kgm2], ωH = +20,994 [s-1] .
The elaborated program offers the complete variations (with respect of time) of the 

parameters which describe the variator’s dynamic response. Some of these variations are 
illustrated in the Fig.3 and 4.  
Two main parameters interfere in the variations of the previous sizes:  
-the moment in which the generator goes from the idle in the load running: t0g = t(ωg = ω0g)
and 
-the start time of the variator tstart, which represents lapse of time in which the angular 
speeds become constant and the angular accelerations become null implicitly (lapse of 
time in which the variator goes in the stationary regime). 
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a)     

b)    

c)     
Fig.3. The shafts’ speed [s-1] and acceleration [s-2] for the different loads Tr: a) the shaft m-1, b) the shaft g-3 

and c) the shaft H-r. 
 

a)     

 131 

ANNALS of the ORADEA UNIVERSITY. 

 Fascicle of Management and Technological Engineering 



b)     

c)     
Fig.4. The shafts’ torsion torques [Nm] for the different loads Tr: a) the shaft m-1, b) the shaft g-3 and c) the 

shaft H-r. 
 

The analysis of these results makes evident the following relevant dynamic aspects:  
1) During the first running phase (see Fig.1, 3 and 4), the generator’s resistant torque is 
null (Tg = 0) and the motor’s torque (which has a decreasing variation) assures both the 
own shaft acceleration (shaft m-1) and the generator’s shaft acceleration (shaft g-3);  
because, at the beginning, the torque TH = T1 + T3 is bigger than Tr (in the given numerical 
conditions), the motor accelerates also the output shaft H, by means of the inertia of the 
generator’s shaft g-3. 

Obviously, if J3 becomes null, the torques  T1 , T3 and TH become null too and the 
output shaft H remains at rest implicitly;  in this case, the shaft H begins to move when the 
generator’s resistant torque assures the achievement of the condition: TH = T1+T3 > Tr.
2) The first running phase (in which, the generator’s torque is null: Tg = 0) is finished at the 
moment when (see Fig.3 and 4) ωg = ω0g = -232,478 [s-1]. Since this moment, the 
generator produces resistant torque and the variation curves of the state parameters are 
modified implicitly.  
3) The start stage is finished at the moment when the angular speeds become constant 
and the angular accelerations become null implicitly (see Fig.3 and 4).  
 
References 

[1]  Diaconescu, D. a.o., Speed mechatronic variator, International Conference Computational Mechanics 
and Virtual Engineering 2005, University Transilvania of Brasov, p.183-188. 

[2]  Miloiu, G. a.o., Modern mechanical transmissions (in Romanian), Ed. Tehnica, Bucuresti. 
[3]  Saal, C. a.o. Electrical actuation and automatization (in Romanian), E.D.P., Bucuresti. 
 

 132 

ANNALS of the ORADEA UNIVERSITY. 

 Fascicle of Management and Technological Engineering 


